Coverage for src / beamme / cosserat_curve / cosserat_curve.py: 98%

199 statements  

« prev     ^ index     » next       coverage.py v7.13.1, created at 2026-01-06 06:24 +0000

1# The MIT License (MIT) 

2# 

3# Copyright (c) 2018-2025 BeamMe Authors 

4# 

5# Permission is hereby granted, free of charge, to any person obtaining a copy 

6# of this software and associated documentation files (the "Software"), to deal 

7# in the Software without restriction, including without limitation the rights 

8# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 

9# copies of the Software, and to permit persons to whom the Software is 

10# furnished to do so, subject to the following conditions: 

11# 

12# The above copyright notice and this permission notice shall be included in 

13# all copies or substantial portions of the Software. 

14# 

15# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 

16# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 

17# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE 

18# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 

19# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 

20# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 

21# THE SOFTWARE. 

22"""Define a Cosserat curve object that can be used to describe warping of 

23curve-like objects.""" 

24 

25from pathlib import Path as _Path 

26from typing import Optional as _Optional 

27from typing import Tuple as _Tuple 

28from xml.etree import ElementTree as _ET # nosec B405 

29 

30import numpy as _np 

31import pyvista as _pv 

32import quaternion as _quaternion 

33from numpy.typing import NDArray as _NDArray 

34from scipy import integrate as _integrate 

35from scipy import interpolate as _interpolate 

36from scipy import optimize as _optimize 

37 

38from beamme.core.conf import bme as _bme 

39from beamme.core.rotation import Rotation as _Rotation 

40from beamme.core.rotation import rotate_coordinates as _rotate_coordinates 

41from beamme.core.rotation import smallest_rotation as _smallest_rotation 

42 

43 

44def get_piecewise_linear_arc_length_along_points( 

45 coordinates: _np.ndarray, 

46) -> _np.ndarray: 

47 """Return the accumulated distance between the points. 

48 

49 Args 

50 ---- 

51 coordinates: 

52 Array containing the point coordinates 

53 """ 

54 

55 n_points = len(coordinates) 

56 point_distance = _np.linalg.norm(coordinates[1:] - coordinates[:-1], axis=1) 

57 point_arc_length = _np.zeros(n_points) 

58 for i in range(1, n_points): 

59 point_arc_length[i] = point_arc_length[i - 1] + point_distance[i - 1] 

60 return point_arc_length 

61 

62 

63def get_spline_interpolation( 

64 coordinates: _np.ndarray, point_arc_length: _np.ndarray 

65) -> _interpolate.BSpline: 

66 """Get a spline interpolation of the given points. 

67 

68 Args 

69 ---- 

70 coordinates: 

71 Array containing the point coordinates 

72 point_arc_length: 

73 Arc length for each coordinate 

74 

75 Return 

76 ---- 

77 centerline_interpolation: 

78 The spline interpolation object 

79 """ 

80 

81 # Interpolate coordinates along arc length 

82 # Note: The numeric evaluation of the spline interpolation can depend on the 

83 # operating system, thus introducing slight numerical differences (~1e-12). 

84 centerline_interpolation = _interpolate.make_interp_spline( 

85 point_arc_length, coordinates 

86 ) 

87 return centerline_interpolation 

88 

89 

90def get_quaternions_along_curve( 

91 centerline: _interpolate.BSpline, point_arc_length: _np.ndarray 

92) -> _NDArray[_quaternion.quaternion]: 

93 """Get the quaternions along the curve based on smallest rotation mappings. 

94 

95 The initial rotation will be calculated based on the largest projection of the initial tangent 

96 onto the cartesian basis vectors. 

97 

98 Args 

99 ---- 

100 centerline: 

101 A function that returns the centerline position for a parameter coordinate t 

102 point_arc_length: 

103 Array of parameter coordinates for which the quaternions should be calculated 

104 """ 

105 

106 centerline_interpolation_derivative = centerline.derivative() 

107 

108 def basis(i): 

109 """Return the i-th Cartesian basis vector.""" 

110 basis = _np.zeros([3]) 

111 basis[i] = 1.0 

112 return basis 

113 

114 # Get the reference rotation 

115 t0 = centerline_interpolation_derivative(point_arc_length[0]) 

116 min_projection = _np.argmin(_np.abs([_np.dot(basis(i), t0) for i in range(3)])) 

117 last_rotation = _Rotation.from_basis(t0, basis(min_projection)) 

118 

119 # Get the rotation vectors along the curve. They are calculated with smallest rotation mappings. 

120 n_points = len(point_arc_length) 

121 quaternions = _np.zeros(n_points, dtype=_quaternion.quaternion) 

122 quaternions[0] = last_rotation.q 

123 for i in range(1, n_points): 

124 rotation = _smallest_rotation( 

125 last_rotation, 

126 centerline_interpolation_derivative(point_arc_length[i]), 

127 ) 

128 quaternions[i] = rotation.q 

129 last_rotation = rotation 

130 return quaternions 

131 

132 

133def get_relative_distance_and_rotations( 

134 coordinates: _np.ndarray, quaternions: _NDArray[_quaternion.quaternion] 

135) -> _Tuple[ 

136 _np.ndarray, _NDArray[_quaternion.quaternion], _NDArray[_quaternion.quaternion] 

137]: 

138 """Get relative distances and rotations that can be used to evaluate 

139 "intermediate" states of the Cosserat curve.""" 

140 

141 n_points = len(coordinates) 

142 relative_distances = _np.zeros(n_points - 1) 

143 relative_distances_rotation = _np.zeros(n_points - 1, dtype=_quaternion.quaternion) 

144 relative_rotations = _np.zeros(n_points - 1, dtype=_quaternion.quaternion) 

145 

146 for i_segment in range(n_points - 1): 

147 relative_distance = coordinates[i_segment + 1] - coordinates[i_segment] 

148 relative_distance_local = _quaternion.rotate_vectors( 

149 quaternions[i_segment].conjugate(), relative_distance 

150 ) 

151 relative_distances[i_segment] = _np.linalg.norm(relative_distance_local) 

152 

153 smallest_relative_rotation_onto_distance = _smallest_rotation( 

154 _Rotation(), 

155 relative_distance_local, 

156 ) 

157 relative_distances_rotation[i_segment] = ( 

158 smallest_relative_rotation_onto_distance.get_numpy_quaternion() 

159 ) 

160 

161 relative_rotations[i_segment] = ( 

162 quaternions[i_segment].conjugate() * quaternions[i_segment + 1] 

163 ) 

164 

165 return relative_distances, relative_distances_rotation, relative_rotations 

166 

167 

168class CosseratCurve(object): 

169 """Represent a Cosserat curve in space.""" 

170 

171 def __init__( 

172 self, 

173 point_coordinates: _np.ndarray, 

174 *, 

175 starting_triad_guess: _Optional[_Rotation] = None, 

176 ): 

177 """Initialize the Cosserat curve based on points in 3D space. 

178 

179 Args: 

180 point_coordinates: Array containing the point coordinates 

181 starting_triad_guess: Optional initial guess for the starting triad. 

182 If provided, this introduces a constant twist angle along the curve. 

183 The twist angle is computed between: 

184 - The given starting guess triad, and 

185 - The automatically calculated triad, rotated onto the first basis vector 

186 of the starting guess triad using the smallest rotation. 

187 """ 

188 

189 self.coordinates = point_coordinates.copy() 

190 self.n_points = len(self.coordinates) 

191 

192 # Interpolate coordinates along piece wise linear arc length 

193 point_arc_length_piecewise_linear = ( 

194 get_piecewise_linear_arc_length_along_points(self.coordinates) 

195 ) 

196 centerline_interpolation_piecewise_linear = get_spline_interpolation( 

197 self.coordinates, point_arc_length_piecewise_linear 

198 ) 

199 centerline_interpolation_piecewise_linear_p = ( 

200 centerline_interpolation_piecewise_linear.derivative(1) 

201 ) 

202 

203 def ds(t): 

204 """Arc length along interpolated spline.""" 

205 return _np.linalg.norm(centerline_interpolation_piecewise_linear_p(t)) 

206 

207 # Integrate the arc length along the interpolated centerline, this will result 

208 # in a more accurate centerline arc length 

209 self.point_arc_length = _np.zeros(self.n_points) 

210 for i in range(len(point_arc_length_piecewise_linear) - 1): 

211 self.point_arc_length[i + 1] = ( 

212 self.point_arc_length[i] 

213 + _integrate.quad( 

214 ds, 

215 point_arc_length_piecewise_linear[i], 

216 point_arc_length_piecewise_linear[i + 1], 

217 )[0] 

218 ) 

219 

220 # Set the interpolation of the (positional) centerline 

221 self.set_centerline_interpolation() 

222 

223 # Get the quaternions along the centerline based on smallest rotation mappings 

224 self.quaternions = get_quaternions_along_curve( 

225 self.centerline_interpolation, self.point_arc_length 

226 ) 

227 

228 # Get the relative quantities used to warp the curve 

229 ( 

230 self.relative_distances, 

231 self.relative_distances_rotation, 

232 self.relative_rotations, 

233 ) = get_relative_distance_and_rotations(self.coordinates, self.quaternions) 

234 

235 # Check if we have to apply a twist for the rotations 

236 if starting_triad_guess is not None: 

237 first_rotation = _Rotation.from_quaternion(self.quaternions[0]) 

238 starting_triad_e1 = starting_triad_guess * [1, 0, 0] 

239 if _np.dot(first_rotation * [1, 0, 0], starting_triad_e1) < 0.5: 

240 raise ValueError( 

241 "The angle between the first basis vectors of the guess triad you" 

242 " provided and the automatically calculated one is too large," 

243 " please check your input data." 

244 ) 

245 smallest_rotation_to_guess_tangent = _smallest_rotation( 

246 first_rotation, starting_triad_e1 

247 ) 

248 relative_rotation = ( 

249 smallest_rotation_to_guess_tangent.inv() * starting_triad_guess 

250 ) 

251 psi = relative_rotation.get_rotation_vector() 

252 if _np.linalg.norm(psi[1:]) > _bme.eps_quaternion: 

253 raise ValueError( 

254 "The twist angle can not be extracted as the relative rotation is not plane!" 

255 ) 

256 twist_angle = psi[0] 

257 self.twist(twist_angle) 

258 

259 def set_centerline_interpolation(self): 

260 """Set the interpolation of the centerline based on the coordinates and 

261 arc length stored in this object.""" 

262 self.centerline_interpolation = get_spline_interpolation( 

263 self.coordinates, self.point_arc_length 

264 ) 

265 

266 def translate(self, vector): 

267 """Translate the curve by the given vector.""" 

268 

269 self.coordinates += vector 

270 self.set_centerline_interpolation() 

271 

272 def rotate(self, rotation: _Rotation, *, origin=None): 

273 """Rotate the curve and the quaternions.""" 

274 

275 self.quaternions = rotation.get_numpy_quaternion() * self.quaternions 

276 self.coordinates = _rotate_coordinates( 

277 self.coordinates, rotation, origin=origin 

278 ) 

279 self.set_centerline_interpolation() 

280 

281 def twist(self, twist_angle: float) -> None: 

282 """Apply a constant twist rotation along the Cosserat curve. 

283 

284 Args: 

285 twist_angle: The rotation angle (in radiants). 

286 """ 

287 material_twist_rotation = _Rotation( 

288 [1, 0, 0], twist_angle 

289 ).get_numpy_quaternion() 

290 

291 self.quaternions = self.quaternions * material_twist_rotation 

292 self.relative_distances_rotation = ( 

293 material_twist_rotation.conjugate() 

294 * self.relative_distances_rotation 

295 * material_twist_rotation 

296 ) 

297 self.relative_rotations = ( 

298 material_twist_rotation.conjugate() 

299 * self.relative_rotations 

300 * material_twist_rotation 

301 ) 

302 

303 def get_centerline_position_and_rotation( 

304 self, arc_length: float, **kwargs 

305 ) -> _Tuple[_np.ndarray, _NDArray[_quaternion.quaternion]]: 

306 """Return the position and rotation at a given centerline arc 

307 length.""" 

308 pos, rot = self.get_centerline_positions_and_rotations([arc_length], **kwargs) 

309 return pos[0], rot[0] 

310 

311 def get_centerline_positions_and_rotations( 

312 self, points_on_arc_length, *, factor=1.0 

313 ) -> _Tuple[_np.ndarray, _NDArray[_quaternion.quaternion]]: 

314 """Return the position and rotation at given centerline arc lengths. 

315 

316 If the points are outside of the valid interval, a linear extrapolation will be 

317 performed for the displacements and the rotations will be held constant. 

318 

319 This function also allows to scale the curvature along the curve, allowing for a 

320 "natural" unwrapping of general curves in 3D. We achieve this by scaling the 

321 "final" curvature along the beam and then evaluating the curve that follows this 

322 curvature (this would actually require to solve an ODE, but we avoid this by 

323 using a piecewise constant approximation). 

324 

325 Args 

326 ---- 

327 points_on_arc_length: list(float) 

328 A sorted list with the arc lengths along the curve centerline 

329 factor: float 

330 Factor to scale the curvature along the curve. 

331 factor == 1 

332 Use the default positions and the triads obtained via a smallest rotation mapping 

333 0 <factor < 1 

334 Integrate (piecewise constant as evaluated with get_relative_distance_and_rotations) 

335 the scaled curvature of the curve to obtain a intuitive wrapping. (factor=0 gives 

336 a straight line) 

337 """ 

338 

339 # Get the points that are within the arc length of the given curve. 

340 points_on_arc_length = _np.asarray(points_on_arc_length) 

341 points_in_bounds = _np.logical_and( 

342 points_on_arc_length > self.point_arc_length[0], 

343 points_on_arc_length < self.point_arc_length[-1], 

344 ) 

345 index_in_bound = _np.where(points_in_bounds == True)[0] 

346 index_out_of_bound = _np.where(points_in_bounds == False)[0] 

347 points_on_arc_length_in_bound = [ 

348 self.point_arc_length[0], 

349 *points_on_arc_length[index_in_bound], 

350 self.point_arc_length[-1], 

351 ] 

352 

353 if factor < (1.0 - _bme.eps_quaternion): 

354 coordinates = _np.zeros_like(self.coordinates) 

355 quaternions = _np.zeros_like(self.quaternions) 

356 coordinates[0] = self.coordinates[0] 

357 quaternions[0] = self.quaternions[0] 

358 for i_segment in range(self.n_points - 1): 

359 relative_distance_rotation = _quaternion.slerp_evaluate( 

360 _quaternion.quaternion(1), 

361 self.relative_distances_rotation[i_segment], 

362 factor, 

363 ) 

364 # In the initial configuration (factor=0) we get a straight curve, so we need 

365 # to use the arc length here. In the final configuration (factor=1) we want to 

366 # exactly recover the input points, so we need the piecewise linear distance. 

367 # Between them, we interpolate. 

368 relative_distance = (factor * self.relative_distances[i_segment]) + ( 

369 1.0 - factor 

370 ) * ( 

371 self.point_arc_length[i_segment + 1] 

372 - self.point_arc_length[i_segment] 

373 ) 

374 coordinates[i_segment + 1] = ( 

375 _quaternion.rotate_vectors( 

376 quaternions[i_segment] * relative_distance_rotation, 

377 [relative_distance, 0, 0], 

378 ) 

379 + coordinates[i_segment] 

380 ) 

381 quaternions[i_segment + 1] = quaternions[ 

382 i_segment 

383 ] * _quaternion.slerp_evaluate( 

384 _quaternion.quaternion(1), 

385 self.relative_rotations[i_segment], 

386 factor, 

387 ) 

388 else: 

389 coordinates = self.coordinates 

390 quaternions = self.quaternions 

391 

392 sol_r = _np.zeros([len(points_on_arc_length_in_bound), 3]) 

393 sol_q = _np.zeros( 

394 len(points_on_arc_length_in_bound), dtype=_quaternion.quaternion 

395 ) 

396 arc_length_spline_interpolation = get_spline_interpolation( 

397 coordinates, self.point_arc_length 

398 ) 

399 for i_point, centerline_arc_length in enumerate(points_on_arc_length_in_bound): 

400 if ( 

401 centerline_arc_length >= self.point_arc_length[0] 

402 and centerline_arc_length <= self.point_arc_length[-1] 

403 ): 

404 for i in range(1, self.n_points): 

405 centerline_index = i - 1 

406 if self.point_arc_length[i] > centerline_arc_length: 

407 break 

408 

409 # Get the two rotation vectors and arc length values 

410 arc_lengths = self.point_arc_length[ 

411 centerline_index : centerline_index + 2 

412 ] 

413 q1 = quaternions[centerline_index] 

414 q2 = quaternions[centerline_index + 1] 

415 

416 # Linear interpolate the arc length 

417 xi = (centerline_arc_length - arc_lengths[0]) / ( 

418 arc_lengths[1] - arc_lengths[0] 

419 ) 

420 

421 # Perform a spline interpolation for the positions and a slerp 

422 # interpolation for the rotations 

423 sol_r[i_point] = arc_length_spline_interpolation(centerline_arc_length) 

424 sol_q[i_point] = _quaternion.slerp_evaluate(q1, q2, xi) 

425 else: 

426 raise ValueError("Centerline value out of bounds") 

427 

428 # Set the already computed results in the final data structures 

429 sol_r_final = _np.zeros([len(points_on_arc_length), 3]) 

430 sol_q_final = _np.zeros(len(points_on_arc_length), dtype=_quaternion.quaternion) 

431 if len(index_in_bound) > 0: 

432 sol_r_final[index_in_bound] = sol_r[index_in_bound - index_in_bound[0] + 1] 

433 sol_q_final[index_in_bound] = sol_q[index_in_bound - index_in_bound[0] + 1] 

434 

435 # Perform the extrapolation at both ends of the curve 

436 for i in index_out_of_bound: 

437 arc_length = points_on_arc_length[i] 

438 if arc_length <= self.point_arc_length[0]: 

439 index = 0 

440 elif arc_length >= self.point_arc_length[-1]: 

441 index = -1 

442 else: 

443 raise ValueError("Should not happen") 

444 

445 length = arc_length - self.point_arc_length[index] 

446 r = sol_r[index] 

447 q = sol_q[index] 

448 sol_r_final[i] = r + _Rotation.from_quaternion(q) * [length, 0, 0] 

449 sol_q_final[i] = q 

450 

451 return sol_r_final, sol_q_final 

452 

453 def project_point(self, p, t0=None) -> float: 

454 """Project a point to the curve, return the parameter coordinate for 

455 the projection point.""" 

456 

457 centerline_interpolation_p = self.centerline_interpolation.derivative(1) 

458 centerline_interpolation_pp = self.centerline_interpolation.derivative(2) 

459 

460 def f(t): 

461 """Function to find the root of.""" 

462 r = self.centerline_interpolation(t) 

463 rp = centerline_interpolation_p(t) 

464 return _np.dot(r - p, rp) 

465 

466 def fp(t): 

467 """Derivative of the Function to find the root of.""" 

468 r = self.centerline_interpolation(t) 

469 rp = centerline_interpolation_p(t) 

470 rpp = centerline_interpolation_pp(t) 

471 return _np.dot(rp, rp) + _np.dot(r - p, rpp) 

472 

473 if t0 is None: 

474 t0 = 0.0 

475 

476 return _optimize.newton(f, t0, fprime=fp) 

477 

478 def get_pyvista_polyline(self, *, factor: float = 1.0) -> _pv.PolyData: 

479 """Create a pyvista (vtk) representation of the curve with the 

480 evaluated triad basis vectors. 

481 

482 Args: 

483 factor: Factor to scale the curvature along the curve (see 

484 `get_centerline_positions_and_rotations` for details). 

485 

486 Returns: 

487 A pyvista PolyData object representing the curve. 

488 """ 

489 

490 positions, rotations = self.get_centerline_positions_and_rotations( 

491 self.point_arc_length, factor=factor 

492 ) 

493 

494 poly_line = _pv.PolyData() 

495 poly_line.points = positions 

496 cell = _np.arange(0, self.n_points, dtype=int) 

497 cell = _np.insert(cell, 0, self.n_points) 

498 poly_line.lines = cell 

499 

500 rotation_matrices = _quaternion.as_rotation_matrix(rotations) 

501 for i_dir in range(3): 

502 poly_line.point_data.set_array( 

503 rotation_matrices[:, :, i_dir], f"base_vector_{i_dir + 1}" 

504 ) 

505 

506 return poly_line 

507 

508 def write_vtk(self, path) -> None: 

509 """Save a vtk representation of the curve.""" 

510 self.get_pyvista_polyline().save(path) 

511 

512 def write_pvd_series( 

513 self, 

514 pvd_path: _Path | str, 

515 *, 

516 factors: list[float] | None = None, 

517 n_steps: int | None = None, 

518 binary: bool = True, 

519 ) -> None: 

520 """Save a pvd series representing the curve at different states. 

521 

522 Args: 

523 pvd_path: Path where to save the pvd file. 

524 factors: List of factors to scale the curvature along the curve. Mutually exclusive with 'n_steps'. 

525 n_steps: Number of steps to create a uniform series of factors. Mutually exclusive with 'factors'. 

526 binary: If True, save the vtk files in binary format. 

527 """ 

528 

529 pvd_path = _Path(pvd_path) 

530 if pvd_path.suffix != ".pvd": 

531 raise ValueError( 

532 f"The output path must have a .pvd suffix, got {pvd_path.suffix}" 

533 ) 

534 

535 if factors is not None and n_steps is not None: 

536 raise ValueError( 

537 "The keyword arguments 'factors' and 'n_steps' are mutually exclusive." 

538 ) 

539 if factors is None and n_steps is None: 

540 raise ValueError( 

541 "One of the keyword arguments 'factors' or 'n_steps' must be provided." 

542 ) 

543 if factors is None: 

544 factors = _np.linspace(0.0, 1.0, num=n_steps) 

545 

546 pvd_file = _ET.Element("VTKFile", type="Collection", version="0.1") 

547 collection = _ET.SubElement(pvd_file, "Collection") 

548 width = max(1, len(str(len(factors) - 1))) 

549 for i_step, factor in enumerate(factors): 

550 # TODO: Check if we can use vtp here instead of vtu. Currently this does 

551 # not work with how we compare files in testing. Since vtu and vtp are 

552 # basically the same in this case, this solution is fine at the moment. 

553 factor_file = pvd_path.parent / f"{pvd_path.stem}.{i_step:0{width}d}.vtu" 

554 _pv.UnstructuredGrid(self.get_pyvista_polyline(factor=factor)).save( 

555 factor_file, binary=binary 

556 ) 

557 _ET.SubElement( 

558 collection, 

559 "DataSet", 

560 timestep=str(factor), 

561 group="", 

562 part="0", 

563 file=str(factor_file.relative_to(pvd_path.parent)), 

564 ) 

565 

566 tree = _ET.ElementTree(pvd_file) 

567 _ET.indent(tree, space=" ", level=0) 

568 tree.write(pvd_path, encoding="utf-8", xml_declaration=True)